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Abstract— Recently, brain-computer interface (BCI) research 

has extended to investigate its possible use in motor 
rehabilitation. Most of these investigations have focused on the 
upper body. Only few studies consider gait because of the 
difficulty of recording EEG during gross movements. However, 
for stroke patients the rehabilitation of gait is of crucial 
importance. Therefore, this study investigates if a BCI can be 
based on walking related desynchronisation features. 
Furthermore, the influence of complexity of the walking 
movements on the classification performance is investigated. Two 
BCI experiments were conducted in which healthy subjects 
performed a cued walking task, a more complex walking task 
(backward or adaptive walking), and imagination of the same 
tasks. EEG data during these tasks was classified into walking 
and no-walking. The results from both experiments show that 
despite the automaticity of walking and recording difficulties, 
brain signals related to walking could be classified rapidly and 
reliably. Classification performance was higher for actual 
walking movements than for imagined walking movements. 
There was no significant increase in classification performance 
for both the backward and adaptive walking tasks compared 
with the cued walking tasks. These results are promising for 
developing a BCI for the rehabilitation of gait. 
 

Index Terms— brain-computer interface (BCI), 
electroencephalography (EEG), event-related 
desynchronisation (ERD), gait, locomotion. 
 

I. INTRODUCTION 
ACH YEAR, about 795 000 people in the US and about  1.1 
million people in Europe experience a stroke event, often 

leading to motor impairments [1], [2]. Motor improvements 
can be reached with natural recovery and rehabilitation 
therapy, predominantly in the first year. Nevertheless, many of 
these patients suffer from some type of permanent paresis or 
paralysis, impacting their daily functioning. Recently the idea 
has risen that a brain-computer interface (BCI) could improve 
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motor rehabilitation in stroke patients [3]. 
The hypothesis for using BCI in motor rehabilitation is that 

by training patients to produce brain signals that belong to 
movement execution and imagery with feedback on these 
signals, changes will be induced in the brain through use-
dependent plasticity. This could in turn lead to a positive 
effect on motor capabilities. The idea of using BCI in motor 
rehabilitation comes from the motor imagery task that is often 
used in BCI research. Motor imagery induces event-related 
desynchronisations (ERD) during imagination [4]. Training 
participants in several sessions can increase the ERD and 
likewise can increase BCI performance. Such training of ERD 
signals could also be embedded in therapy for stroke patients 
[3]. Supporting evidence for BCI facilitated motor 
rehabilitation comes from recent findings that have shown that 
motor imagery training alone induces changes in brain 
networks [5] and has a beneficial effect on motor recovery [6], 
[7]. It can be expected that feedback on the brain signals 
accompanying motor imagery could increase this effect even 
more. Results of preliminary studies evaluating the effect of 
BCI sensorimotor rhythm training by imagining movement 
show contradictory results. Whereas some studies fail to show 
motor improvements [8], more and more short-term studies do 
report improvements in motor functioning [9]–[13]. Although 
there are no long term group studies that show a clinical 
relevance, there is enough evidence to support the assumption 
that BCIs could improve motor recovery [14]. 

Most of the investigations into the use of BCI in 
rehabilitation have focused on upper body rehabilitation [8]–
[13]. However, for stroke patients the use of the lower 
extremities, and more specifically gait, is an important factor 
in becoming independent of the care of others. Therefore, it is 
interesting to know if a BCI can be based on brain activations 
associated with walking (for a review of the possibilities for 
using BCI in walking rehabilitation see [15]). However, the 
role of the cortex during walking has been under debate. It is 
thought that locomotion is coordinated by central pattern 
generators (CPGs) in the spinal cord [16] and that the basic 
motor pattern is then modified by sensory feedback and 
supraspinal control (for a review see [17], [18]). This control 
involves brain stem, cerebellum, basal ganglia and thalamus. 
In the last decades, it has been shown with neuroimaging 
methods that the supraspinal control also includes cortical 
areas, among which the dorsal premotor cortex (PMd) and 
supplementary motor area (SMA). These areas are active 
during walking [19], [20], and imagined walking [21]–[23].  
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 Although leg movements have often been investigated with 
electroencephalography (EEG), which is the method most 
often used in BCI, gait detection from EEG is not often done 
because of several reasons. First, due to the deeper location in 
the cortex and the orientation of the source of activity the 
detection is more difficult than upper body movements. 
Second, because of the gross movements during walking the 
data is susceptible to movement artifacts. Recently several 
methods have been used to remove these artifacts from the 
data [24], [25]. This has led to reports of cortical activity 
during walking measured with EEG. A relationship between 
spectral perturbations and the step cycle has been found [24], 
[26], [27]. Others have decoded the EEG during walking and 
found correlations with gait kinematics [28], [29]. Two of 
these studies investigate the ERD [24], [27], which probably is 
the most robust signal for use in a BCI for the rehabilitation of 
gait. Only few attempts have been made to classify EEG 
signals related to actual or imagined walking movements. For 
example, imagined gait could be used to control ambulation in 
a virtual reality environment [30]. Furthermore, in a single-
subject study a robotic gait orthosis could be controlled with 
imagined walking movements [31]. Finally, active and passive 
walking movements were separated based on the brain signals 
[32]. 

 Walking is a very automated process, and automated motor 
processes cause a general decrease of activity in distributed 
networks involving cortico-basal ganglia and cortico-
cerebellar pathways [33], [34], for a review see [35]. 
Inversely, less automatic movements could increase the brain 
signals related to walking movements and in this way increase 
performance of a BCI using these signals. As there have been 
only a few studies that looked at different walking behaviors 
(for example walking with virtual reality, see [36]) there is a 
need to expand the variety of locomotor tasks. One unexplored 
task is walking backwards. In a recent review, it was pointed 
out that such task should rely on a combination of spinal and 
cortical activations [37].  Similarly, walking at continuously 
changing speed should also require substantial cortical 
activation. 

In the present paper we will investigate the possibility of 
controlling a BCI using brain signals related to walking, more 
specifically the ERD, versus brain signals during rest in 
healthy subjects. Walking tasks that produce the strongest 
brain activations are probably most useful in the BCI and for 
rehabilitation. Therefore, we used simple and more complex 
walking tasks to investigate the effect of automaticity of the 
performed or imagined movement on the BCI performance. 
An increased performance with the BCI controlled by the 

more complex tasks is expected. Both tasks were executed 
under two conditions, namely when actually performed and 
imagined. The brain signals are expected to be less strong 
during imagined walking, hence resulting in lower 
performance of the BCI in this condition. 

II. METHODS 
Two experiments were conducted, which both tested the 

effect of the complexity of the walking task on the 
performance of the BCI. In the first experiment classification 
performance was calculated off-line, whereas the second 
experiment was designed such that it also included an online 
evaluation session. 

A. Experiment 1 
In the first experiment, actual and imagined walking 

movements were performed in the forward and backward 
direction. Backward walking was chosen as the more complex 
task, because it is more demanding yet very similar to forward 
walking in movement trajectories of the legs and joint angles 
[38], [39]. Therefore, if differences in brain signals are found 
these cannot be attributed to differences in kinematics.  

 
1) Participants 

Twelve healthy volunteers (mean age 29 year, SD 5.6) 
participated in experiment 1. They all gave written informed 
consent before the start of the experiment. The experiment 
was approved by the ethical committee of the faculty of social 
sciences at the Radboud University Nijmegen.   

 
2) Task 

Subjects executed two actual and two imagined walking 
tasks on a treadmill (ENRAF Nonius, Type EN-tred Reha). 
They walked forward (FW) and backward (BW) at a slow 
speed (3 km/h). Furthermore, they had to imagine walking 
forward (IFW) and backward (IBW). For the backward trials, 
subjects had to turn around on the treadmill, hence facing the 
back of the treadmill. During all tasks, subjects could hold on 
to safety bars at the sides of the treadmill. The eyes were open 
in all conditions. 

Before the start of the experiment subjects walked on the 
treadmill for about 2 minutes in forward and backward 
direction to become accustomed to walking at this speed on a 
treadmill. A metronome was adjusted to synchronize with the 
step frequency of the subject to make sure that subjects could 
walk at this pace in both forward and backward direction. 
Subsequently, subjects practiced a trial of each of the four 
tasks. They were instructed to synchronize the walking to the 

         
Fig. 1. (a) Schematical representation of a trial in experiment 1. TM = treadmill (b) The visual display during the trial: a green fixation cross during the no-
walking period, an example instruction, and a white fixation cross during the walking period. (c) Positions of the electrodes with labels above the positions. 
The red dots indicate the subset of electrodes used for analysis and classification. 
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metronome. Furthermore, they were asked to minimize head 
and eye movements. For the imaginary tasks, subjects were 
instructed to use kinesthetic motor imagery, i.e. imagining the 
feeling that actual performance produces. If subjects indicated 
they needed more practice for a particular task, another trial of 
that task was executed. 

 
3) Design 

In total, eight sequences were performed. Each sequence 
consisted of four trials: each of the four walking conditions 
was executed once in a random order. A trial started with a 
period of quiet standing while subjects looked at a fixation 
cross on a computer screen for six seconds, which was used as 
the no-walking task. Then an instruction was displayed telling 
the subject which task had to be executed next. In the actual 
walking tasks, the treadmill started, subjects walked for 48 s, 
after which the treadmill was stopped again. The treadmill 
took about 7 s to come up to speed and another 7 s to slow 
down and stop completely, hence adding up to a walking 
period of 62 s (see Fig. 1). During the no-walking and walking 
periods a fixation cross was displayed on a screen. In between 
trials there were a few seconds of rest. After each sequence, 
subjects could rest for a minute.  

 
4) EEG Recordings 
EEG was recorded with 62 electrodes with the ground placed 
on the AFz-electrode position. These signals were amplified 
using a TMSi Refa-72 amplifier (Twente Medical Systems 
International, The Netherlands) and digitized at a sampling 
rate of 500 Hz, referenced to an average of all channels. 
During fitting of the EEG cap, the impedance of each 
electrode was kept below 50 kΩ. Because the TMSi Refa 
amplifier has a very high input-impedance, this electrode 
impedance has a low influence on the measured signals. 

5) Analysis 
EEG data was first temporally downsampled to 250 Hz to 

reduce dimensionality, after which the data during no-walking 
(standing) and walking periods was cut into 1.2  epochs. In 
total the walking conditions contained 408 epochs (8 trials * 
51 epochs) and the no-walking conditions contained 40 epochs 
(8 trials * 5 epochs). Linear trends were removed, and a 
common average reference was subtracted from the data. 
Subsequently, electrodes with bad signal quality were 

removed if the variance was more than 3.5 standard deviations 
greater than the median variance. On average one electrode 
was identified as outlier and removed. To remove the 
influence of these outlying electrodes on the remaining 
electrodes, a common average reference was subtracted from 
the data again.  

To remove the influence of EMG activity on the EEG, a 
component analysis, namely canonical correlation analysis 
(CCA) [40], was performed to identify EMG components. 
This method has been used before in speech production [41] 
and walking [24]. In the actual walking tasks, the removal of 
EMG activity is particularly important, because inclusion of 
these class specific artifacts could overestimate the 
classification performance. One could argue that a selection of 
only a central channel set could also decrease influence of 
EMG. However, because of spreading of electrical activity, 
central channels could also be contaminated, although to a 
lesser extent, with EMG signals. With the component analysis 
method used in the current study, the EMG signals in 
peripheral electrodes are used for decomposition of EEG and 
EMG components. The EMG components are then removed 
from the whole data set, minimizing EMG influence even at 
central locations. To compute the EMG components, CCA 
was applied to the EEG data. EMG components were defined 
as components in which the power in the EMG frequency 
band (15 to 30 Hz) was more than 1.3 times stronger than in 
the EEG frequency band (1 to 15 Hz). These EMG 
components were removed from the EEG data. Subsequently, 
a central set of 25 electrodes (see Fig. 1) was selected to 
remove any remaining EMG activity in peripheral electrodes. 
On these remaining electrodes a surface laplacian based on 
spherical spline interpolation [42] was performed to improve 
spatial selectivity. To compute the power spectral density 
(PSD), Welch's method with a hanning window of 250 ms, 
and an overlap of 125 ms was used [43]. For feature selection, 
the frequency bins between 8 and 32 Hz with a resolution of 4 
Hz were used.  

To separate the classes (walking vs. no-walking) for each 
task a linear classifier was trained on the 1.2 second-epochs 
using a L2 regularized logistic regression objective [44]. The 
logistic regression classifier finds the important features and 
hence no extra feature selection is necessary. The 
regularization strength was set with leave-one-trial-out cross-

         
Fig. 2. (a) Schematical representation of a trial in experiment 2. TM = treadmill (b) Virtual path display. The first three images show the display during 
training: a static display during no-walking, an animated movement of the path, with the bars moving towards the subject during the walking period. 
Coloured bars indicate a right heel strike and a left heel strike. The two rightmost images show examples of the display during online feedback: 
transparent orange coloured bars indicate no-walking feedback with low predicted classification probability; opaque blue bars indicate walking feedback 
with high predicted probability. 
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validation. To prevent over-fitting during this cross-validation 
process the EMG component removal was repeated for each 
fold using only the examples used to train the classifier. 
Because of the unequal number of examples in each class (5 
no-walking vs. 51 walking epochs in each trial), the classes 
were weighted in the class training, such that each class had 
equal importance. In other words, a balanced loss was used 
such that the weighted summed error in the two classes was 
the same. Furthermore, a balanced classification performance 
was calculated by averaging the performance for the walking 
and no-walking epochs, such that 50% was the chance level 
for both classes. 

 
6) Statistical Analysis 

On the PSDs of Cz the ANOVAs were performed per 
walking task to test for significant differences in power over 
all frequencies between walking and no-walking epochs. On 
the difference (ERD) between walking and no-walking PSD 
an ANOVA was performed to test for differences between the 
four walking tasks and over the frequencies. 

To test for a significant performance above chance level, 
the confidence bounds were calculated with a randomization 
test. For this, the labels were randomly permuted over the 
examples per subject and classification performance was 
calculated. This procedure was repeated 1000 times. This is 
comparable to the simulation method of [45], with the 
exception that it does not use simulated data, but real data 
from the experiment. The 95th percentile was chosen as the 
bound per subject and task. The largest confidence bound over 
all subjects and tasks was selected as threshold for significant 
classification performance, hence the chance level. To test for 
significant interactions and differences in classification rates 
between walking complexity (forward and backward) and 
modality (actual and imaginary), a 2x2 repeated measures 
ANOVA was used. The alpha level was set to .05 for all 
statistical tests.  
 

B. Experiment 2 
It is possible that subjects quickly learned to perform the 

backward walking task within the session in experiment 1, 
which could have possibly made the task less complex. To 
exclude the possibility that this fast learning of the backward 
walking task influenced the results in experiment 1, a second 
experiment was conducted. Here a more complex task was 
used that required constant adaptation of the motor program. 
The constant adaptation task may increase the signal measured 
from SMA and PMd because these areas are involved in 
sequencing and timing of limb movements and the control of 
gait under guidance of visual information respectively [23]. 
Furthermore, in this experiment online performance was 
evaluated. Unless mentioned otherwise, the methods used in 
experiment 1 were also applied in experiment 2.  
 
1) Participants 

Nine healthy volunteers (mean age 29 year, std 5.6) 
participated in experiment 2 (3 of these also participated in 

experiment 1).   
2) Task 

Four walking tasks were executed. Subjects walked forward 
on a treadmill with a constant speed (3 km/h) and imagined 
doing this, hereafter called constant walking (CW) and 
imaginary constant walking (ICW) respectively. These two 
tasks are similar to the forward walking conditions from 
experiment 1. Furthermore, they had to walk on the treadmill 
while the speed was changed during the course of the trial 
using a custom made matlab routine, to increase the 
complexity of the task. This required the need for constant 
adaptation of the walking commands. Therefore the speed of 
the treadmill varied between 2.5 and 4 km/h. The speed was 
changed three times during a trial, jittered (+/- 3 s) around 12, 
20 and 30 seconds after starting the treadmill. The speed 
changes were randomized over trials. Subjects had to actually 
perform this adaptive walking task (AW) and they had to 
imagine walking with varying speeds (imaginary adaptive 
walking, IAW). Speed instructions were given via a computer 
screen (see below). 
 
3) Design 

 The experiment was divided in two blocks: a training block 
for classifier training and an online feedback block. The 
training block consisted of eight sequences in which the tasks 
were each performed once. To be able to give instructions 
about the required walking speed, a virtual path was displayed 
during the tasks (see Fig. 2). The standing, or no-walking, 
period lasted 10 s, during which the display of the virtual 
display was static. Subsequently, an instruction was displayed 
telling the subject which task had to be executed next and the 
walking trial began. The walking period lasted 44 s including 
starting up and stopping of the treadmill in the actual walking 
tasks. During the walking period the virtual path moved 
simulating a view when subjects would actually walk on this 
path. Synchronized to the stepping speed, one bar changed 
color to indicate when subjects had to step down with their left 
and right foot (orange and green respectively). This was used 
to indicate the stepping speed during the actual walking trials 
and the speed of imagining walking. In a short practice 
session, the step length and step frequency were determined 
by walking on the treadmill at 3 km/h. This step frequency 
was used in the constant walking tasks. For the other speeds, 
the step frequency was calculated with the following formula: 

 
lvf /6.3/=     (1) 

 
in which f is the step frequency, v is the speed of the 

treadmill in km/h, and l is the step length in m. This ensured 
that subjects needed to adapt their step frequency, and not just 
the step length, thereby increasing the difficulty of the walking 
task. The step frequency was indicated to the subject by the 
frequency of appearance of the colored bars in the virtual path. 
Hence, the speed of the virtual path matched the speed of the 
treadmill during actual walking. 
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In the online test block the subjects received feedback about 
the performance of the classification in 8 sequences. Due to 
technical problems, one subject only performed four 
sequences. The color of the bars in the virtual path indicated 
the estimated class, either walking or no-walking. The 
transparency of the path indicated the predicted probability of 
the classification, hence if the prediction was strong, i.e. low 
transparency, or weak, i.e. highly transparent (see Fig. 2).  

In two of the eight imaginary tasks in the feedback block, 
subjects were instructed to freely test the performance, hence 
imagine walking or no-walking as they wished. These 
sequences were removed from further analysis.   
4) Analysis 

In experiment 2 the addition of feedback required online 
analysis. The pre-processing, as used online, differed from the 
analysis in experiment 1 in four ways. First, the data was 
sliced in 2.5 s epochs. Second, removal of EMG components 
did not use the relative power in the EMG and EEG frequency 
band, but was based on the auto-correlation of each 
component with a time-shifted version of that signal. A 
threshold for the auto-correlation and for the standard 
deviation of this auto-correlation was used to select EMG 
components. The selected components were removed from the 
EEG data. Third, the complete electrode set (62 electrodes) 
was used for classification. Finally, only the frequency bins 
between 8 and 24 Hz were included as features for 
classification. Other analyses were the same as in experiment 
1. Because of the different designs, a different number of 
epochs was available. Each sequence consisted of 4 no-
walking trials and 13 walking trials for each walking 
condition. The classifier trained during the training block was 
applied to the new unseen data from the test block, and these 
results were fed back to the subject via the changing colors of 
the virtual path.  

To better compare results from experiment 1 and 2, the 
performance was recalculated offline with the same analysis 
methods as used for experiment 1, for the training as well as 
for the test block. For the latter to simulate online use, a 
classifier was trained on the data of the training block and 
applied to the new unseen data from the test block. On average 
one electrode was removed because of bad signal quality. 

Because starting and stopping of the treadmill in the CW task 
is similar to the AW task, these periods were removed from 
the analysis, leaving a walking period of 30 s. The different 
epoch slicing (1.2 s epochs) and the removal of these start-up 
and stopping periods resulted in sequences consisting of 8 no-
walking trials and 25 walking trials for each walking 
condition.  

 
5) Statistical Analysis 

Statistical analyses were the same as for experiment 1. A 
randomization test was used to test performance above chance 
level. An 2x2 repeated measures ANOVA with the factors 
walking complexity (constant and adaptive) and modality 
(actual and imaginary) was used to test differences in 
performance between walking conditions. 

III. RESULTS 

A. Experiment 1 
A clear ERD was found above motor areas for the actual 

walking tasks around the mu and beta band. This can be seen 
in Fig. 3 as a decreased amplitude for each of the four walking 
tasks with respect to the no-walking task. These decreases in 
amplitude are significant, indicated by main effects for 
walking in both the FW, F(1,154) = 9.35, p < 0.01, and BW , 
F(1,154) = 18.38, p < 0.001, condition. No interactions with 
frequencies were found. For the imaginary tasks, the ERD was 
less clear around the beta band, and absent in the mu band in 
the Cz electrode. The ERD in both imaginary conditions was 
not significant. The ERD during both actual walking tasks was 
stronger than during both imagined walking tasks, F(3,308) = 
14.85, p < 0.001.  

During actual walking, the ERD around the mu band (8-14 
Hz) was strongest in fronto-central and lateralized parietal 
areas (see Fig. 4). Around the beta band (18 to 32), the ERD 
was strongest above the central electrodes, with some 
spreading to lateralized parietal areas. The ERD around the 
mu and beta band were less clear during imagined walking. 

 
Fig. 3. Grand average spectral density at Cz over all subjects for the no-
walking (NoW), imaginary forward (IFW), imaginary backward (IBW), 
forward (FW) and backward (BW) walking epochs in experiment 1. 

 
Fig. 4. Topography of ERD around the mu (8-14 Hz) and beta (18-32 Hz) 
band (walking minus no-walking) in the actual forward (FW) and 
backward (BW) walking epochs in experiment 1. Desynchronisation is 
indicated in blue, synchronisation is indicated in red. 
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The ERD in the BW task was somewhat stronger and spread 
to a larger channel group than in the FW task.  

Based on results of the randomization test the chance level 
was set to 54%. The average classification performance was 
78% for the FW task, 82% for the BW task, 69% for the IFW 
task and 70% for the IBW task (see Fig. 5). For all walking 
tasks and all subjects this was significantly above chance. A 
main effect of modality was found, F(1,44) = 33.53, p < 
0.001, indicating that the actual walking tasks had a higher 
classification performance than the imaginary walking tasks. 
No main effect of direction was found, F(1,44) = 2.01, and the 
interaction was also non-significant, F(1,44) = 0.56, p > 0.05. 
 

B. Experiment 2 
In the low beta band, a clear ERD was found for all walking 

tasks with respect to the no-walking period (see Fig. 6). The 
ERD was significant for the CW, F(1,112) = 14.07, p<0.001, 
AW, F(1,112) = 12.54, p<0.001, and IAW, F(1,112) = 7.99, 
p<0.01, condition. No interaction with frequencies was found. 
Around the higher beta band, the ERD was only visible for the 
actual walking tasks. This pattern of a strong ERD in low beta 
band and a weaker or no ERD around the higher beta band for 
the imaginary walking tasks was visible in four out of nine 
participants. Around the mu band a small ERD was seen in the 
central electrode, but a strong desynchronisation was present 
at parietal-occipital areas (see Fig. 7). The beta ERD during 
actual walking was strongest above central electrodes. No 
clear difference was seen between the constant and adaptive 
walking. The ERD during imaginary walking was less 
pronounced around both the mu and beta bands. A main effect 
of walking task on the ERD was found, F(3,224) = 6.23, 
p<0.001. Post-hoc analysis showed that the ERD during both 
actual walking tasks was stronger than during the ICW task.  

The online performance of the feedback block was 79%, 
78%, 70% and 69% for the CW AW, and ICW and IAW tasks 

respectively. Since non-optimal parameters were used, EMG 
activity could have been included in the features used for 
classification, overestimating the true performance. Therefore, 
the data was re-analyzed offline. 

For the training block the average recalculated classification 
performance was 87% for the CW task, 89% for the AW task, 
71% for the ICW task, and 76% for the IAW task (see Fig. 
7a). Classification performance of all tasks was significantly 
above chance (54%, as calculated by the randomization test). 
A main effect of modality was found, F(1,32) = 50.37, p < 
0.001, indicating that performance was stronger in actual 
walking compared to imaginary walking. There was no effect 
of complexity of the walking task on the classification 
performance, F(1,32) = 2.21, and no interaction effect, 
F(1,32)=0.46, p > 0.05. Similar effects were seen when 
applying the recalculated classifier of the training block to the 
test block data (see Fig. 7b). The classification performance 
was 84% and 86% for the CW and AW tasks respectively. For 
both the ICW and IAW tasks, classification performance was 
66%. Again these average performances were all above 
chance level (59%). Furthermore, classification performance 

    
Fig. 5. Classification performance on the 1.2-second epochs for the 
forward (FW), backward (BW), imaginary forward (IFW), and imaginary 
backward (IBW) walking conditions in experiment 1. The bars indicate 
averages over all subjects; each individual subjects classification 
performance is indicated by the cross and plus markers, in which each 
subject has a unique combination of marker and colour. The dotted line 
indicates the chance level of the classification performance. 

 
Fig. 6. Grand average spectral density at Cz over all subjects from the 
training block in experiment 2 for the no-walking (NoW), imaginary 
constant (ICW), imaginary adaptive (IAW), constant (CW) and adaptive 
(AW) walking epochs. 

 
Fig. 7. Topography of the ERD around the mu (8-14 Hz) and beta (18-32 
Hz) band (walking minus no-walking) in the actual constant (CW) and 
adaptive (AW) walking epochs in experiment 2. Desynchronisation is 
indicated in blue, synchronisation is indicated in red. 
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was higher during actual walking compared to imaginary 
walking, F(1,32) = 76.03, p < 0.001. The effect of complexity, 
F(1,32) = 0.60, and the interaction effect, F(1,32) = 0.25, p > 
0.05, are non-significant. 

IV. DISCUSSION 
In this paper we investigated the possibility of classifying 

EEG signals related to walking movements and the effect of 
increasing complexity of the movements on classification 
performance. Both actual and imagined walking movements 
could be classified above chance level, but as expected the 
actual movement tasks performed better than the imaginary 
movement tasks. In contrast to what we expected, complexity 
of movements did not significantly influence classification 
performance, although the mean classification performance of 
both complex tasks was higher than the simple tasks.  
 

A. Cortical control of walking 
All actual walking movements produced an ERD around 

mu and beta bands and could be classified. One could argue 
that this classification is mainly based on sensorimotor 
feedback from the muscles. However, even imagined walking 
movements, in which there is no sensorimotor feedback, could 
be classified above chance level. These results suggest that 
walking on a treadmill is under some form of cortical control. 
In the forward and constant walking tasks, subjects walked 
with a constant speed. Even under these conditions activity 
related to walking could be detected, indicating that this 
activity is not simply starting or stopping the walking 
movements, but is probably involved in the continuous control 
of the movement. The mu and beta ERD that we found is very 
similar in location and frequency to the ERD found during 
other leg movements [46]–[48]. Hence, at first sight, the 
aspect of cortical control of walking that can be measured with 
EEG does not appear very different from cortical control 
related to other movements. However, it should be mentioned 

that the present type of walking required some level of 
continuous guidance and corrections in the less complex tasks 
as well, since the subjects were required to follow a given 
cadence. In locomotor tasks that are even more automated it is 
possible that the role of the cortex is less prominent. However, 
an ERD has also been observed during walking on a robotic 
gait orthosis [27]. Although less prominent, the ERD was also 
visible during passive walking. In a later report, this difference 
could even be classified and used to assess the level of 
participation in the walking task [32].  
 

B. Complexity 
In agreement with a previous report [30], both actual and 

imagined walking movements could be classified versus rest 
above chance level. Although the difference in classification 
performance and ERD between normal and more complex 
walking tasks was not significant, the difference was in the 
expected direction for both experiments. The ERD around the 
beta band during actual forward walking was about 25% lower 
than during backward walking. Previously differences 
between forward and backward walking of up to 50% have 
been found in SMA, pre-central gyrus and superior parietal 
lobule with NIRS [49]. The discrepancy between these studies 
could have been due to differences in methodology, including 
the precision cadence that was required in the current study, 
and the difference in controlling hand position. Moreover, in 
the present study subjects walked at a speed closer to the 
average preferred walking speed, whereas walking speeds in 
the NIRS study were lower. Walking at very low speeds can 
produce different patterns of muscle activation [50], hence 
cortical control of slow walking could be different from the 
control of normal walking. A difference between normal and 
more complex walking tasks has also been shown with 
imagined locomotion. In fMRI [21] showed that, compared to 
motor imagery of normal gait, motor imagery of precision gait 
is accompanied by stronger activations in left and right  
 

     
Fig. 8. Recalculated classification performance on the 1.2-second epochs for the constant (CW), adaptive (AW), imaginary constant (ICW) and imaginary 
adaptive (IAW) walking conditions in experiment 2. In (a) the offline performance of the training block is given. In (b) the performance of the test block, 
calculated with the classifier from the training block, is given. The bars indicate averages over all subjects; each individual subjects classification 
performance is indicated by the cross and plus markers, in which each subject has a unique combination of marker and colour. The dotted line indicates 
the chance level of the classification performance. 
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superior parietal lobule, and the superior middle occipital 
gyrus. A similar trend was seen in PMd and cerebellum. La 
Fougère [51] proposed two different locomotion networks for 
steady-state and modulatory locomotion. In the direct pathway 
for steady-state locomotion execution signals from the primary 
motor cortex areas go directly to the CPG. Planning and 
modulation of movement is controlled by a separate pathway. 
Signals originating in prefrontal SMA are transmitted through 
the basal ganglia and brainstem locomotor regions to the 
spinal CPG. Taken together, these previous results suggest 
that more demanding locomotion tasks should produce 
stronger or at least different brain activity. However, with 
NIRS and fMRI a different aspect of brain activity is 
measured than with EEG, namely the hemodynamic response. 
Although correlations have been found between both 
responses [52], discrepancies between the two have also been 
described [53]. This could explain differences between the 
results in hemodynamic responses and the results from the 
present study. On the other hand, if the tasks are sufficiently 
different, it is sometimes possible to detect EEG changes. For 
example, Wagner et al. [36] compared 3 types of treadmill 
training with different complexities. A more difficult training 
with interactive virtual environment feedback was compared 
to two control conditions: walking with a visual attention 
paradigm, in which visual stimuli were unrelated to the motor 
task; and walking with mirror feedback (participants observed 
their own movement). The first task decreased mu, beta and 
low gamma rhythms compared to the other tasks [36]. This 
was taken to demonstrate that premotor and parietal areas 
show increased activity during walking under complex 
conditions. 

Similar results for experiment 1 and 2 suggest that the 
absence of a significant difference between the classification 
of forward and backward walking was not caused by fast 
learning of the backward task. A factor that could have 
influenced the difference between the simple and more 
complex tasks is the cueing for the precision cadence. 
Attuning walking to both visual and acoustic cues is 
attentionally demanding [54], [55]. Hence, the simple tasks 
used in the present study were both already a somewhat 
complex task. Recently it has been shown that, visual cues, as 
used in experiment 2, require more attention than auditory 
cues [56]. Therefore, the CW task using visual cues from 
experiment 2 was probably more difficult than the FW task 
using auditory cues from experiment 1. Differences in 
complexity in both experiments, but specifically when visual 
cues were used, could have been too small to show up 
significantly different in the classification results. 

In principle one could argue that when subjects walked in 
forward and backward direction in experiment 1, the different 
background could have caused changes in ERD patterns. 
However, the no-walking periods that preceded the walking 
periods were performed in the same direction as the walking 
periods. Therefore, if there is an effect of background, it will 
most likely influence the walking and no-walking periods in a 
similar way. Hence, the effect of background light can be 
neglected. 

Although not significant, the more complex backward and 
adaptive walking tasks produced a stronger ERD and higher 
classification performance than the simple walking tasks. 
When using more data this effect may reach significance. 
However, because the effect did not show up with the amount 
of data used here, any complexity related effect is most likely 
relatively small, and thus of limited value for BCI 
applications. 

 

C. Actual and imagined walking 
Classification performance with actual walking tasks was 

higher than performance with imagined walking tasks. 
Although movement, muscle and EOG artifacts could boost 
performance especially in the actual walking tasks, we believe 
this was not the case, first because EMG activity was 
decomposed from the data. Second, EOG activity is likely not 
synchronized to the stepping, also because they were 
instructed to focus on the screen, and hence averaging will 
reduce influences from EOG artifacts. Third, movement 
artifacts were minimized by stabilizing both the cables and cap 
as much as possible. Furthermore the amplifier and shielded 
cables that were used during the measurements prevent 
contamination with movement artifacts from moving cables. 
Movement artifacts are particularly prominent at very low 
frequencies. Therefore frequencies below 8 Hz were not 
included in the feature selection. Finally, the ERD during 
actual walking was located above central and parietal areas. In 
prior work, both foot movement execution and foot movement 
imagination have been associated with a desynchronisation in 
mu and beta band above central electrodes [46]–[48]. 
Therefore, classification of actual walking tasks was likely 
solely based on brain signals.  

Differences in the strength of brain signals during actual 
and imagined movements have been seen previously in EEG 
measurements, and were attributed to weaker afferent input 
[47]. Whether only this weaker afferent input causes this 
difference between actual and imagined movements, or 
whether there is also a difference in the motor component of 
the ERD remains an open question. The different ERD pattern 
around the high beta range between actual and imaginary tasks 
that was found in the current study could also partly reflect the 
difference in afferent input, or it could reflect a difference in 
motor components between the actual and imaginary tasks. 
However, this needs further investigation because this pattern 
was found in only a subset of the participants. 
 
D. Implications for rehabilitation 

The results from the current study are relevant for 
developing rehabilitation techniques that include BCI training. 
First, in stroke rehabilitation training, attempted movement 
will be more appropriate than imagined movement, although 
the latter being studied more frequently. In fMRI it has been 
shown that activity of attempted movement and imagined 
movement differs in strength in different areas [57]. For 
attempted walking movements, ERD levels and classification 
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performance will probably be somewhere in between levels 
for actual and imagined movements. Therefore, the results for 
both actual and imagined walking movement give insight into 
what we could expect in rehabilitation settings. Secondly, the 
design of the current study will be more appropriate for 
rehabilitation training sessions than the standard BCI designs. 
In the latter, the (imagined) movement task is often performed 
for only a couple of seconds. But in rehabilitation, it will be 
more appropriate to have longer periods of (attempted) 
walking, while feedback is given at regular intervals, for 
example every second. Our results show that classification of 
short periods of time is also possible during continuous actual 
and imagined walking. Finally the results show that the 
influence of the complexity of the walking task on the 
classification performance, if present at all, is small. Hence, 
any precision walking task can be chosen in a rehabilitation 
program. An important question that remains for developing a 
BCI training therapy is how the ERD patterns during either 
actual, imagined or attempted walking in stroke patients 
compare to these results in healthy subjects.  

V. CONCLUSION 
In this paper we aimed to investigate the potential of EEG 

based detection of walking as a first step towards BCI based 
rehabilitation of gait.  Our results show that despite the 
automaticity of walking ERD signals are present during all 
types of walking movements. By removing any movement-
related interference with advanced signal analysis techniques, 
this ERD could be observed in the relevant cortical areas with 
EEG. This confirms an earlier report on walking with an 
exoskeleton [58] and walking combined with a variety of tasks 
[36]. Furthermore, this ERD could be classified during 
walking movements rapidly and with high reliability (average 
~80% correct in 1.2s). A similar, though weaker (average 
~70% correct), signal was found during imagined walking. 
We did not see a significant increase in signal strength when 
comparing cued walking and more complex walking 
(backward walking; walking with changing speeds). Despite 
the relatively deep location of the foot region and the 
automaticity of the walking movements, performance is 
similar to that when using superficial sources and less 
automatic movements, such as hand movements.  Thus, 
walking movements are a viable alternative for BCI-based 
control applications.  The work of [10] and [13] has shown 
improved rehabilitation of upper-limb movement after stroke 
at similar detection performance levels.  Thus, this approach 
should be effective in lower-limb rehabilitation. 
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